CARBON CAPTURE & SEQUESTRATION

Towards a Berkeley-Stanford Energy Innovation Hub

ENERGY INNOVATION HUBS

25 M\$ for 5 year

- Fuel from Sunshine;
- Batteries and Energy Storage;
- Carbon Capture and Storage;
- Solar Electricity;
- Energy Efficient Building Systems and Design;
- Grid Materials, Devices, and Systems;
- Modeling and Simulation with Nuclear Energy;
- Extreme Materials within Nuclear Energy

CARBON CAPTURE AND STORAGE

Fossil Energy

In FY 2010, the Energy Innovation Hub for Carbon Capture and Storage will focus on enabling <u>fundamental advances</u> and discovery of novel and revolutionary <u>capture/separation</u> approaches leading to transformational capture technologies to dramatically reduce the energy penalty and costs associated with CO₂ capture.

.... but this may not be the final text ...

... in the workshop we try to define

SOME ISSUES

- The scale of the CO₂ problem is beyond comprehension
- Innovations have a very long time scale in this industry (20-40 years)

HOW MUCH IS 125M\$

	Pirates of the Caribbean: At World's End 2007	\$ 300 m
2	Spider-Man 3 2007	\$ 258 m
3	Pirates of the Caribbean: Dead Man's Chest 2006	\$225 m
4	X-Men: The Last Stand 2006	\$210m
5	Superman Returns 2006	\$209 m
6	King Kong 2005	\$207 m

..

29 Angels & Demons 2009

\$150m

Stage of CCS component technologies

Capture
Transport
Storage

Stage of development

Source: Interviews; Team analysis

AIMS OF THE WORKSHOP

- As there is no call for the Hub; hence there is **no** criteria to argue whether an idea/expertise should be included or not
- Identify the possible strengths of a Berkeley-Stanford collaboration
- If we would write a call for a hub how should it look like?
- There will be many opportunities in this field
 - Exchange of information
 - Exchange of expertise

Introduction

9:00 AM Welcome – Berend Smit (LBNL/UCB)

9:10 AM The Challenges for CCS – Sally Benson (Stanford)

Physical Capture and Sequestration

9:40 AM Introduction to Energy Frontiers Research Centers at LBNL and UCB

- Jeff Long (LBNL/UCB) Carbon Capture EFRC
- Don DePaolo (LBNL/UCB) Carbon Storage EFRC

10:00 AM Brainstorming framed by Short Presentations (Refreshments Served)

Two-Slide Presentations

- Lou Durlofsky (Stanford) Computational Issues for Modeling and Optimizing CO2 Sequestration
- Steven Kaye (Wildcat Discovery Technologies) High Throughput Gas Separation and Storage Tools
- Curt Oldenburg (LBNL) Some Beneficial Uses of CO2 in Subsurface Systems
- Lynn Orr (Stanford) Research Issues for Enhanced Oil Recovery and Coal Bed and Basalt Storage
- Mark Zoback (Stanford) A Strategy for Enhanced Recovery and CO2 Sequestration in Gas Shales

11:00 AM Discussion

The Broader Context of Carbon Capture and Sequestration

- 11:30 AM The Scale of the Problem
 - Abhoyjit Bhown (Electric Power Research Institute)

12:00 PM *Brainstorming framed by Short Presentations* (Lunch Served at 12:30)

Two-Slide Presentations

- Ron Cohen (LBNL/UCB) Verification of Greenhouse Gas Emissions Reduction
- Karl Gerdes (Chevron) Industrial Perspective on Cost, Energetics, and Scale
- Isha Ray (UCB) Incorporating Public Perceptions of CCS in Energy Policy
- Alan Sanstad (LBNL) Improving Modeling of Economy, Climate, and Energy Policy to Support CCS R&D

Chemical Capture and Sequestration

- 1:30 PM Overview of Chemical CCS, Stripping, and Utilization
 - Clifford Kubiak (UCSD)

2:00 PM Brainstorming framed by Short Presentations (Refreshments Served at 3:00)

Two-Slide Presentations

- Caroline Ajo-Franklin (LBNL)
- John Arnold (UCB) Clean oxidation process and chemical feedstocks
- Chris Edwards (Stanford) Coupling energy processing and carbon storage
- Jon Ellman (LBNL/UCB)
- Heinz Frei (LBNL) Conversion to fuel via sunlight
- Zahid Hussain (LBNL) What the Advanced Light Source Can Offer for CCS
- Jeff Long (LBNL/UCB) Catalytic Reduction for CO2

Biologically-Inspired Carbon Capture and Sequestration

3:30 PM Overview of Biological CCS

Jan Liphardt (LBNL/UCB)

4:00 PM Brainstorming framed by Short Presentations

Two-Slide Presentations

- Terry Hazen (LBNL)
- Christer Jansson (LBNL) Algal Cultures for Biofuel, Carbon Capture, and Biosequestration
- Janet Jansson (LBNL) LBNL Efforts on Biosequestration
- Cheryl Kerfeld (LBNL/JGI) Biological Carbon Capture and Fixation in Bacterial Microcompartments
- John Tainer (LBNL) Algal Biosequestration

Conclusion

4:50 PM Remarks – Berend Smit (LBNL/UCB)